

Using multi-modal neuroimaging to characterise social brain specialisation in infants

M. F. Siddiqui¹, P. Pinti¹, S. Brigadoi², S. Lloyd-Fox³, C.E. Elwell⁴, M.H. Johnson³, I. Tachtsidis⁴, E.J.H Jones¹

¹Centre for Brain and Cognitive Development, Birkbeck, University of London, UK ²Department of Development and Psychology, University of Padova, Italy ³Department of Psychology, University of Cambridge, UK ⁴Department of Medical Physics and Biomedical Engineering, UCL, UK

Introduction

- Interactive specialisation posits that functional specialisation emerges through a competition between brain regions¹
- Functional specialisation is typically indexed through <u>unitary</u> imaging modalities focusing on

Spatial selectivity

Measuring changes in oxygenated blood using fNIRS and fMRI OR

Temporal selectivity

Measuring neural activity using EEG

 Energetic constraints (such as energy metabolism) may also contribute to the emergence of functional specialisation, this requires the investigation of

> Coupling between neuronal demand and energetic supply

Introduction

- Broadband near-infrared spectroscopy (bNIRS) can be used to obtain measurements of changes in redox state of mitochondrial enzyme cytochrome-c-oxidase (oxCCO) thereby providing measures of <u>cellular energy metabolism</u>, alongside changes in haemodynamics.
- In this study, we performed <u>simultaneous bNIRS and EEG</u> measurements in 4-to-7month-old infants to investigate

Neurovascular coupling (coupling between neural oscillations and haemodynamic activity)

<u>Neurometabolic coupling (coupling between neural</u> <u>oscillations and metabolic activity)</u>

• We expected differential coupling between neural oscillatory activity, haemodynamic and metabolic activity, modulated by naturalistic social content.

Methods

- 42 typically developing (TD) infants; 4-to-7-months old
- **Social** Experimental condition (8-12s):
 - Videos of women singing nursery rhymes; "incy-wincy spider" and "wheels on the bus"
- **Non-social** Experimental condition (8-12s):
 - Videos of mechanical toys
- Baseline consisted of static transport images e.g. cars (8-9s)

8 - 9 s

(BASELINE)

8 – 12 s (SOCIAL VIDEOS)

8 – 9 s (BASELINE)

8 – 12 s (NONSOCIAL VIDEOS)

--->

Methods

- <u>UCL multi-channel broadband NIRS system²</u> with 19 channel 10 channels over the occipital cortex, 9 channels over the right hemisphere (s/d 2.5 cm, sampling rate 1s, 120 wavelengths between 780 900 nm)
- Neuroelectrics Enobio wireless 32 channel EEG system
- Custom-built headgear containing bNIRS optodes and EEG electrodes.
- bNIRS array positioned over the right hemisphere, according to a NIRS-MRI co-registration map³

²*Phan et al,* 2016 (*Biomedical Optics Express*)

³Lloyd-Fox et al, 2014 (Neurophotonics)

Data analysis

Combined bNIRS – EEG

• GLM approach

 Model applied for each frequency band (theta, alpha, beta & gamma), for each bNIRS signal (HbO₂, HHb and oxCCO), between each bNIRS channel and EEG electrode (over the right hemisphere)

Results - Social

Significant <u>coordinated increase</u> in <u>gamma</u> <u>power</u> and <u>HbO₂ & oxCCO</u> over the <u>temporo-</u> <u>parietal region</u>

Results – Non-social

Beta power

<u>HHb</u>

PO4

Significant <u>coordinated increase</u> in <u>beta power</u> and <u>HHb & oxCCO</u> over the <u>parieto-occipital</u> <u>region</u>

Conclusion

- Performed simultaneous bNIRS and EEG in 4-to-7-month-old infants during functional activation
- Demonstrated task- and frequency-dependent coupling between neural oscillatory activity, haemodynamics and metabolism.
- This is a novel approach critical for advancing our understanding of early brain physiology and cognitive function.

Thank you for listening!

Poster: Using multi-modal neuroimaging to characterise social brain specialisation in infants

Full publication:

Maheen Siddiqui, Paola Pinti, Sabrina Brigadoi, Sarah Lloyd-Fox, Clare E Elwell, Mark H Johnson, Ilias Tachtsidis, Emily JH Jones (2023) **Using multi-modal neuroimaging to characterise social brain specialisation in infants** *eLife* **12**:e84122.